HuggingFace Pipeline Tasks¶
Learn how to publish tasks for HuggingFace Pipeline sources. This guide provides the exact function name, input structure, and examples for working with HuggingFace Ready environments.
🎯 Function Interface¶
HuggingFace Pipeline sources use a standardized interface:
- Function Name:
inference
- Input Model:
Inference
withinput
andargs
fields
class Inference(BaseModel):
input: str | dict # Your input data (text, image, etc.)
args: dict = {} # Additional pipeline arguments
🚀 Quick Task Publishing¶
Basic Text Classification Task¶
import ogpu.client
import time
from web3 import Web3
# Configure chain
ogpu.client.ChainConfig.set_chain(ogpu.client.ChainId.OGPU_TESTNET)
# Publish task to HuggingFace Pipeline source
task_info = ogpu.client.TaskInfo(
source="your_hf_source_address_here",
config=ogpu.client.TaskInput(
function_name="inference",
data={
"input": "This movie is absolutely fantastic!",
"args": {}
}
),
expiryTime=int(time.time()) + 600, # 10 minutes
payment=Web3.to_wei(0.002, "ether") # 0.002 OGPU
)
task_address = ogpu.client.publish_task(task_info)
print(f"✅ Task published: {task_address}")
📊 Input Examples by Task Type¶
📝 Text Classification¶
🖼️ Image Classification¶
💬 Text Generation¶
data = {
"input": "Once upon a time",
"args": {
"max_length": 100,
"temperature": 0.7,
"num_return_sequences": 1
}
}
🔀 Visual Question Answering¶
data = {
"input": {
"question": "What is in this image?",
"image": "https://example.com/image.jpg"
},
"args": {}
}
🌐 Translation¶
📄 Summarization¶
🔧 Advanced Task Configuration¶
Multiple Text Inputs¶
data = {
"input": [
"First text to classify",
"Second text to classify",
"Third text to classify"
],
"args": {}
}
Custom Pipeline Arguments¶
data = {
"input": "Generate creative text",
"args": {
"max_length": 200,
"temperature": 0.8,
"top_p": 0.9,
"do_sample": True,
"num_return_sequences": 3
}
}
Image with Custom Parameters¶
data = {
"input": "...",
"args": {
"top_k": 5,
"confidence_threshold": 0.8
}
}
🎯 Complete Task Examples¶
Sentiment Analysis Task¶
import ogpu.client
import time
from web3 import Web3
ogpu.client.ChainConfig.set_chain(ogpu.client.ChainId.OGPU_TESTNET)
task_info = ogpu.client.TaskInfo(
source="0x1234567890123456789012345678901234567890", # Your HF source
config=ogpu.client.TaskInput(
function_name="inference",
data={
"input": "The customer service was excellent and very helpful!",
"args": {}
}
),
expiryTime=int(time.time()) + 300,
payment=Web3.to_wei(0.001, "ether")
)
task_address = ogpu.client.publish_task(task_info)
Image Classification Task¶
task_info = ogpu.client.TaskInfo(
source="0x1234567890123456789012345678901234567890",
config=ogpu.client.TaskInput(
function_name="inference",
data={
"input": "https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png",
"args": {
"top_k": 3
}
}
),
expiryTime=int(time.time()) + 400,
payment=Web3.to_wei(0.002, "ether")
)
task_address = ogpu.client.publish_task(task_info)
Text Generation with Custom Args¶
task_info = ogpu.client.TaskInfo(
source="0x1234567890123456789012345678901234567890",
config=ogpu.client.TaskInput(
function_name="inference",
data={
"input": "Write a short story about artificial intelligence:",
"args": {
"max_length": 200,
"temperature": 0.8,
"top_p": 0.9,
"num_return_sequences": 2
}
}
),
expiryTime=int(time.time()) + 600,
payment=Web3.to_wei(0.004, "ether")
)
task_address = ogpu.client.publish_task(task_info)
🔍 Task Response Handling¶
Expected Response Format¶
HuggingFace Pipeline tasks return responses in this format:
# Text classification response
{
"result": [
{"label": "POSITIVE", "score": 0.9998}
]
}
# Text generation response
{
"result": [
{"generated_text": "Once upon a time, there was a brave knight..."}
]
}
# Image classification response
{
"result": [
{"label": "Egyptian cat", "score": 0.9421},
{"label": "tabby, tabby cat", "score": 0.0876}
]
}
Processing Task Results¶
import ogpu.client
# Get task responses
responses = ogpu.client.get_responses(task_address)
for response in responses:
if response.confirmed:
result = response.data
print(f"Task result: {result}")
# Process based on task type
if "generated_text" in str(result):
# Text generation result
generated = result["result"][0]["generated_text"]
print(f"Generated: {generated}")
elif "label" in str(result):
# Classification result
prediction = result["result"][0]
print(f"Prediction: {prediction['label']} ({prediction['score']:.4f})")
Ready to publish HuggingFace tasks! 🚀