Skip to content

HuggingFace Pipeline Tasks

Learn how to publish tasks for HuggingFace Pipeline sources. This guide provides the exact function name, input structure, and examples for working with HuggingFace Ready environments.

🎯 Function Interface

HuggingFace Pipeline sources use a standardized interface:

  • Function Name: inference
  • Input Model: Inference with input and args fields
class Inference(BaseModel):
    input: str | dict    # Your input data (text, image, etc.)
    args: dict = {}      # Additional pipeline arguments

🚀 Quick Task Publishing

Basic Text Classification Task

import ogpu.client
import time
from web3 import Web3

# Configure chain
ogpu.client.ChainConfig.set_chain(ogpu.client.ChainId.OGPU_TESTNET)

# Publish task to HuggingFace Pipeline source
task_info = ogpu.client.TaskInfo(
    source="your_hf_source_address_here",
    config=ogpu.client.TaskInput(
        function_name="inference",
        data={
            "input": "This movie is absolutely fantastic!",
            "args": {}
        }
    ),
    expiryTime=int(time.time()) + 600,     # 10 minutes
    payment=Web3.to_wei(0.002, "ether")   # 0.002 OGPU
)

task_address = ogpu.client.publish_task(task_info)
print(f"✅ Task published: {task_address}")

📊 Input Examples by Task Type

📝 Text Classification

data = {
    "input": "I love this product! It's amazing.",
    "args": {}
}

🖼️ Image Classification

data = {
    "input": "https://example.com/image.jpg",  # Image URL or base64
    "args": {}
}

💬 Text Generation

data = {
    "input": "Once upon a time",
    "args": {
        "max_length": 100,
        "temperature": 0.7,
        "num_return_sequences": 1
    }
}

🔀 Visual Question Answering

data = {
    "input": {
        "question": "What is in this image?",
        "image": "https://example.com/image.jpg"
    },
    "args": {}
}

🌐 Translation

data = {
    "input": "Hello, how are you?",
    "args": {
        "src_lang": "en",
        "tgt_lang": "fr"
    }
}

📄 Summarization

data = {
    "input": "Long article text here...",
    "args": {
        "max_length": 150,
        "min_length": 50
    }
}

🔧 Advanced Task Configuration

Multiple Text Inputs

data = {
    "input": [
        "First text to classify",
        "Second text to classify", 
        "Third text to classify"
    ],
    "args": {}
}

Custom Pipeline Arguments

data = {
    "input": "Generate creative text",
    "args": {
        "max_length": 200,
        "temperature": 0.8,
        "top_p": 0.9,
        "do_sample": True,
        "num_return_sequences": 3
    }
}

Image with Custom Parameters

data = {
    "input": "...",
    "args": {
        "top_k": 5,
        "confidence_threshold": 0.8
    }
}

🎯 Complete Task Examples

Sentiment Analysis Task

import ogpu.client
import time
from web3 import Web3

ogpu.client.ChainConfig.set_chain(ogpu.client.ChainId.OGPU_TESTNET)

task_info = ogpu.client.TaskInfo(
    source="0x1234567890123456789012345678901234567890",  # Your HF source
    config=ogpu.client.TaskInput(
        function_name="inference",
        data={
            "input": "The customer service was excellent and very helpful!",
            "args": {}
        }
    ),
    expiryTime=int(time.time()) + 300,
    payment=Web3.to_wei(0.001, "ether")
)

task_address = ogpu.client.publish_task(task_info)

Image Classification Task

task_info = ogpu.client.TaskInfo(
    source="0x1234567890123456789012345678901234567890",
    config=ogpu.client.TaskInput(
        function_name="inference",
        data={
            "input": "https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png",
            "args": {
                "top_k": 3
            }
        }
    ),
    expiryTime=int(time.time()) + 400,
    payment=Web3.to_wei(0.002, "ether")
)

task_address = ogpu.client.publish_task(task_info)

Text Generation with Custom Args

task_info = ogpu.client.TaskInfo(
    source="0x1234567890123456789012345678901234567890",
    config=ogpu.client.TaskInput(
        function_name="inference",
        data={
            "input": "Write a short story about artificial intelligence:",
            "args": {
                "max_length": 200,
                "temperature": 0.8,
                "top_p": 0.9,
                "num_return_sequences": 2
            }
        }
    ),
    expiryTime=int(time.time()) + 600,
    payment=Web3.to_wei(0.004, "ether")
)

task_address = ogpu.client.publish_task(task_info)

🔍 Task Response Handling

Expected Response Format

HuggingFace Pipeline tasks return responses in this format:

# Text classification response
{
    "result": [
        {"label": "POSITIVE", "score": 0.9998}
    ]
}

# Text generation response  
{
    "result": [
        {"generated_text": "Once upon a time, there was a brave knight..."}
    ]
}

# Image classification response
{
    "result": [
        {"label": "Egyptian cat", "score": 0.9421},
        {"label": "tabby, tabby cat", "score": 0.0876}
    ]
}

Processing Task Results

import ogpu.client

# Get task responses
responses = ogpu.client.get_responses(task_address)

for response in responses:
    if response.confirmed:
        result = response.data
        print(f"Task result: {result}")

        # Process based on task type
        if "generated_text" in str(result):
            # Text generation result
            generated = result["result"][0]["generated_text"]
            print(f"Generated: {generated}")
        elif "label" in str(result):
            # Classification result
            prediction = result["result"][0]
            print(f"Prediction: {prediction['label']} ({prediction['score']:.4f})")

Ready to publish HuggingFace tasks! 🚀